             The truth-functions can be ordered in series.

That is the foundation of the theory of probability.

5.101    The truth-functions of every number of elementary propositions can be written in a scheme of the following kind:

 (T T T T)(p, q) Tautology (if p then p, and if q then q) (p p . q q) (F T T T)(p, q) in words: Not both p and q. (~(p . q)) (T F T T)(p, q) ''    ''    If q then p. (q p) (T T F T)(p, q) ''    ''    If p then q. (p q) (T T T F)(p, q) ''    ''    p or q. (p v q) (F F T T )(p, q) ''    ''    Not q. (~q) (F T F T)(p, q) ''    ''    Not p. (~p) (F T T F)(p, q) ''    ''    p or q, but not both. (p . ~q :v: q . ~p) (T F F T)(p, q) ''    ''    If p, then q; and if q, then p. (p q) (T F T F)(p, q) ''    ''    p (T T F F)(p, q) ''    ''    q (F F F T)(p, q) ''    ''    Neither p nor q. (~p . ~q  , or also:   p | q) (F F T F)(p, q) ''    ''    p and not q. (p . ~q) (F T F F)(p, q) ''    ''    q and not p. (q . ~p) (T F F F)(p, q) ''    ''    p and q. (p . q) (F F F F)(p, q) Contradiction (p and not p; and q and not q.) (p . ~p . q . ~q)

Those truth-possibilities of its truth-arguments, which verify the proposition, I shall call its truth-grounds.

5.11 - 5.15